

EVALUATION OF MEDICATION ERROR TYPES AND PATTERNS AMONG PEDIATRIC IN-PATIENTS AT ZEWUDETU GENERAL HOSPITAL

Takele Achalu Dengela*

Lecturer at Africa Medical College, Addis Ababa Ethiopia.

Article Received: 03 December 2024

Article Review: 25 December 2024

Article Accepted: 15 January 2025

*Corresponding Author: Dr. Takele Achalu Dengela

Lecturer at Africa Medical College, Addis Ababa Ethiopia.

Email Id: takeleachalu@gmail.com

How to cite this Article: Takele Achalu Dengela (2025). EVALUATION OF MEDICATION ERROR TYPES AND PATTERNS AMONG PEDIATRIC IN-PATIENTS AT ZEWUDETU GENERAL HOSPITAL, World Journal of Pharmacy and Medical Science, 1(1): 18-24.

Copyright © 2025 Takele Achalu Dengela | World Journal of Pharmacy and Medical Science
This is an open-access article distributed under creative Commons Attribution-NonCommercial 4.0 International license (CC BY-NC 4.0)

ABSTRACT

Background: Any mistakes made in the prescription, distribution, administration, or monitoring of a medication are considered medication errors and contribute significantly to patient harm. Even though medication errors are the greatest preventable cause of patient damage, children are much more likely to die from them than adults are. **Objective:** To assess types and patterns of medication Errors among pediatrics in-patients at Zewudetu general hospital from June 2023 to August 2023. **Methods:** From Jun-Aug 2023, a cross-sectional study at Zewudetu General Hospital that included a review of medical records and patient interviews was carried out. The entire set of information regarding medication error was presented using the consecutive sampling method and descriptive statistics. **Results:** 45% of the 161 pediatric patients admitted to the pediatric wards did not have a medication error, compared to 55% who did. Documentation error made up 35.9% of all discovered pharmaceutical errors, making it the most common. The second most common pharmaceutical error (24.7%) was a dosing error. Medication mistake was more common in patients who were given antibiotic prescriptions (57.1%) and in patients who had pneumonia (55.9%). **Conclusion:** Among studied pediatric patients, greater than half of patient had medication error. Documentation error was the most medication error identified. Among medication prescribed, antibiotics were the most prescribed medication and the most class of medication with high medication error. Medication error was high among patients diagnosed with pneumonia.

KEYWORDS: Children's medication error.

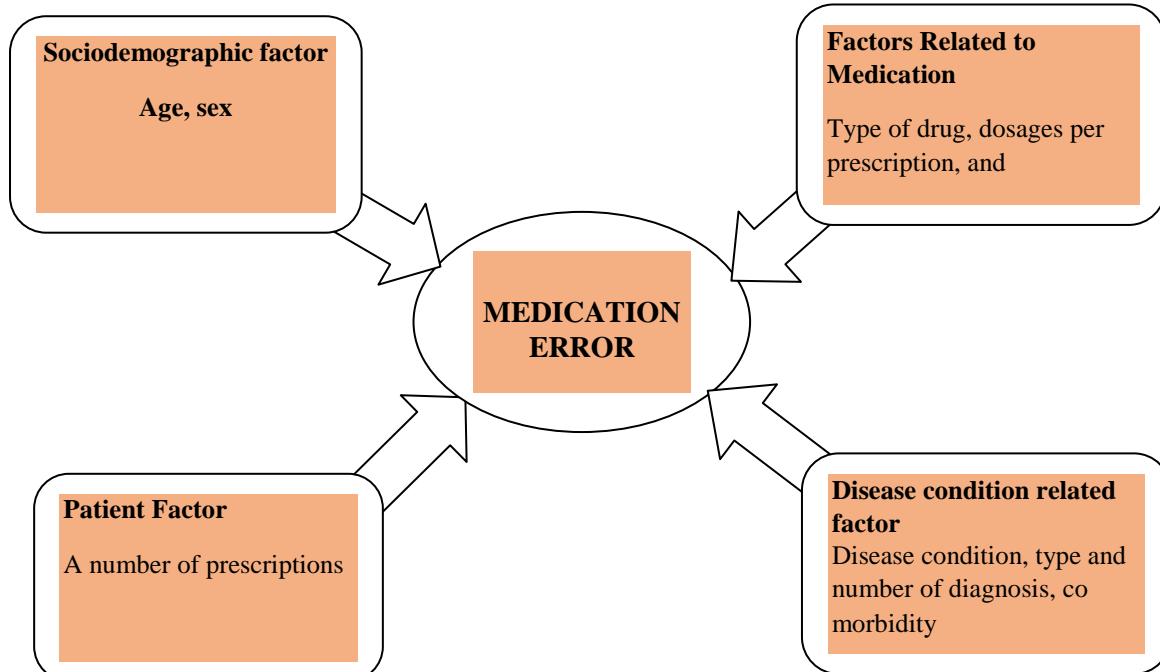
1. INTRODUCTION

1.1. Background

Medication is available from health providers all over the globe. Nevertheless, with frequent and growing prescription usage, there is a rising threat of damage (Duerden, 2013). The significance of prudent drug usage has been well-documented in a number of articles on patient safety and healthcare quality, with a focus on the negative influence of medication errors on health of patient and requirement of reliable safety protocols.

Any mistakes occurring during the prescription, distribution, administration, or monitoring of a drug are

considered medication errors, regardless of whether they have unfavorable effects or not. They are also the source of patient damage that can be avoided the most readily (Williams, 2007). Medication errors (MEs) represent a prevalent and preventable source of iatrogenic harm and one of the most important categories of medical errors (Al-Jeraisy, 2011). In hospitalized patients, medication errors raise the risk of disease and mortality (Williams, 2007). Williams asserts that between 2 and 14% of inpatients in the US have medication errors, with between 1 and 2% of those sustaining harm.


Poor prescription is to blame for most mishaps. According to the survey, pharmaceutical errors are responsible for 1 in 20 hospital admissions and are expected to kill 7,000 patients annually. 6.5 out of every 10 adult hospitalizations and 5 out of every 100 adult drug orders result in medication mistakes (Al-Jeraisy, 2011).

Napoleon's decision to have Duc d'Enghien executed in 1794 is supposed to have been the mistake Talleyrand thought was worse than a crime. Additionally, Antoine Boulay de la Meurthe and Joseph Fouché, Bonaparte's Minister of Police (after known as Duc d'Otrante), have been given credit for the proverb (a deputy in corps legislative). Nevertheless, whoever said it implied that the means were justified for the sake of the end. And while if it is not advised to break the law to prevent pharmaceutical errors, one should undoubtedly work as diligently to prevent them as one would work to avoid committing a crime.

Among the 2 to 14% of in-patients who experience medication errors, 1% to 2% of them sustain injury. Poor prescription is to blame for most mishaps. They happen in 6.5 out of every 10 adult hospital admissions and 5 out of every 100 adult prescriptions (Al-Jeraisy, 2011). Prescription mistakes are found in between 3 and 20% of all prescriptions written for pediatric hospital patients and 10.1% of children seen in emergency rooms, according to the majority of large-scale studies. In the global mortality toll, medication errors account for 0.4% of all fatalities (Bourgeois et al., 2010).

WHA68.20: Worldwide load of pharmaceutical error and requirement of organized actions at national level for addressing its social, health, as well as public knowledge consequences was approved by WHA in 2015 to address this issue. The majority of medications utilized in newborns are dispensed in dosages and units for kids or adults. This requires a lot of math and carries a greater risk of inaccuracy (Chan, 2001). Children's communication skills are less developed than adults', which limits their ability to inform healthcare professionals about possible medication errors. However, there hasn't been a lot of research done on the issue of MEs along with ADEs in pediatric in-patient situations. Children's continually fluctuating body surface areas and weight make them particularly susceptible to drug dose and distribution problems (Duerden, 2013).

This study is significant from a variety of perspectives. First off, nothing is known about the ME status of the target population in Ethiopia, particularly in the research area, because to the paucity of studies in this sector. This study will therefore yield vital data that can close this gap. Second, knowing the number of children with ME will help policymakers better plan for lowering the dangers brought on by these problems. Third, knowing the risk factors for ME is essential because it allows for the development of an effective strategy to reduce problems with drug therapy and so improve patient care. Finally, the results of this study will serve as a benchmark for future academics who desire to do comparable studies in the nation. Consequently, this study will evaluate pediatric patients at Zewudetu general hospital who have ME.

Figure 1: A Conceptual Model for Analysis of Root Cause of MEs.

2. METHOD

2.1. Study area and period

The study will be done in Zewudetu general hospital Addis Ababa city, Ethiopia.

2.2 Study Design and Period

Hospital based cross sectional study will be made from June 2023 to August 2023.

2.3. Populations

2.3.1 Source Population

All pediatric patients admitted to pediatric wards of Yekatit12 Referral hospital.

2.3.2 Study Population

All pediatric patients admitted to pediatric wards of Zewudetu general hospital and fulfill inclusion criteria.

2.4 Inclusion and Exclusion Criteria

2.4.1 Inclusion Criteria

All pediatric patients admitted to pediatric ward of Zewudetu general hospital during the study period will be incorporated in this study.

2.4.2 Exclusion Criteria

Ambulatory patients or if the medication errors happen at outpatient of Yekatit12 Referral hospital. Involuntary patient's parents to review his/her patient profile card.

2.5 Sample Size Determination

The number of patient admitted to pediatric ward during study period and fulfill inclusion criteria will be included. A minimum Sample size will be calculated by using single proportion equation

$$Ni = \frac{z^2 p (1 - p)}{D^2}$$

Here,

Z=Confidence Level, P=Estimation of Population and D=Margin of Error

If: Z=1.96, P=0.5, and D=0.05

$$Ni = \frac{(1.96)^2 (0.5) (1 - 0.5)}{0.05^2}$$

$$Ni = 384.16 \sim 384$$

The sample size will be estimated via the sample reduction formula depending on the study population.

$$N = \frac{ni}{1 + ni/N}$$

Here: Ni=Initial Sample Size, Nf = Final Sample Size and N= Total number of medication error that will be assessed.

So the Sample Size Becomes:-

$$Nf = 384 / (1 + 384 / 1000) = 147$$

10% is added for non-response. Thus, the sample size will be 161

2.6 Sampling Technique

Every patient who meets the inclusion criteria will be added until the study's completion using consecutive sampling.

2.7 Study Variables

2.7.1. Dependent Variables

Medication errors.

2.7.2. Independent Variables

1. Socio-demographic factors: Age, Sex, Occupational status, Residence.
2. Medication related factors: Class of medications, Type of Medication, Formulation.
3. Disease condition related factors: Disease condition, Types of diagnosis, Comorbidity.

2.8 Data Collection Method

2.8.1. Instrument

The questionnaires will be developed according to the study purpose and made to be as straightforward as feasible to accommodate the knowledge of both respondents and interviewers for data collection.

2.8.2 Data Collectors Recruitment and Training

The numerators will be selected from students of health science, more specifically from pharmacy because they are expected to have better awareness regarding this issue.

2.8.3 Data Quality Control

To ensure the integrity of the gathered data, the subsequent measures will be implemented. The suitably constructed data collection gadget will be utilized. The data gathering format will undergo pretesting. Daily, the aggregated data was examined for completeness and consistency.

2.8.4. Data Analysis

The gathered data was input into a computer and analyzed using SPSS version 21. The study's results were presented as frequencies and percentages. The data was synthesized and delineated utilizing tables and figures.

2.9 Ethical Consideration

Before beginning the actual data collection, Africa Medical College of Health Sciences provided ethical clearance and approval for the study. Patients' contribution in this study was completely voluntary, confidential, and safeguarded private data like name and address. Before any data is collected, each participant will be required to sign a signed informed consent. Participants' choice to decline to participate or leave the interview was honored. Using the patient's guard, the interviewer respected the patients' privacy.

2.10. Operational definitions of terms

Medication errors are described as any preventable incidents that may result in incorrect medicine usage or

patient injury while under the supervision of a healthcare practitioner, caregiver, or patient. They may pertain to professional practice, pharmacotherapy, medication administration practices, or systemic failures. (Rothschild et al., 2010).

Selection errors are characterized by the inappropriate selection of a medication for an accurate diagnosis, the prescription of contraindicated pharmaceuticals for a patient, and the duplication of medications.

Dosage errors refer to mistakes arising from excessive dosage, insufficient dosage, ambiguous dosages, incorrect strength, inappropriate dosage form, or omission of a dose.

Documentation errors are classified as inaccuracies arising from absence of prescriber contact information, illegibility, transcribing mistakes, usage of brand names, hazardous abbreviations, and trailing or preceding zeroes.

Monitoring errors encompass errors resulting from inadequate oversight of monitoring parameters during drug administration or neglecting to adhere to recommended monitoring protocols.

Timing errors involved the use of incorrect/missing frequency or duration.

Omission errors: Errors that arise when an intended action is not executed. This encompassed the inability to administer a medication or a total failure to prescribe a medication.

3. RESULT

3.1. Socio-Demographic Characteristics

161 pediatric in patient cards were examined for the current investigation. Male patients made up 83 (51.5%) of the pediatric patients studied, while female patients made up the remaining 78 (48.5%). The age distribution reveals that the majority of patients are between the ages of 1 and 5 (69.5%). The patient's most common complaints were coughing 53 times (32.9%), followed by vomiting 22 times (13.6%). Fever was one of the other frequent complaints, followed by convulsions (12.4%), difficulty breathing (14.6%), and diarrhea (13.0%). The majority of children complained about multiple things. 90 cases of pneumonia (55.9%) were diagnosed, followed by 15 cases of appendicitis (9.3%), 12 cases of asthma (7.4%), 12 cases of neonatal sepsis (7.4%), 11 cases of amebiasis/giardiasis (6.8%), and 9 cases of SAM (5.6%).

Table 1: Socio demographic characteristics of pediatric patients Zewudetu general hospital.

Socio demographic data		Frequency	Percentage (%)
Sex	Male	83	51.5
	Female	78	48.4
Age	<1 year	22	13.6
	1-5 year	112	69.5
	6-14 year	27	16.7
Chief compliance	Cough	53	32.9
	Fever	22	13.6
	Diarrhea	21	13.0
	Vomiting	22	13.6
	Swelling /tenderness	17	10.5
	Difficult of breathing	14	8.6
	Convulsion	12	7.4
Diagnoses	Malaria	4	2.4
	Pneumonia	90	55.9
	Meningitis	8	4.9
	Sepsis	12	7.4
	SAM	9	5.6
	Asthma	12	7.4
	Appendicitis	15	9.3
	Amebiasis/giardiasis	11	6.8

3.2 Type of medications

The predominant category of medications provided was antimicrobials, with 92 instances (57.1%) of antimicrobial prescriptions within the study group. In

numerous instances, the second and third most frequently prescribed medications were vitamins, accounting for 19 (11.8%), and anti-helminthics, comprising 10 (6.2%) prescriptions (table 2).

Table 2: Medicines Prescribed in pediatric admission in Yekatit 12 Referral hospital from February 2022 to June 2022.

Types of medication	Class of medication	Frequency	%
Medicines Prescribed	Antimicrobials	92	57.1
	Antimalarial	7	4.3
	Bronchodilators	7	4.3
	Anticonvulsants	8	4.9
	Antidiarrheals	8	4.9
	Supplements	19	11.8
	Analgesics	10	6.2
	Anthelmintic	10	6.2

The most common type of pharmaceutical error, accounting for 32 (34.9%) cases, was documentation error. The rate of missing information was highest in this category of errors (14; 15.8%), followed by abbreviation (11; 12.3%), and brand name use (7; 7.8%). Dosing errors, which made up 22 (24.7%) of the total prescription errors, were the second most common form of error, followed by selection errors, which made up 16 (17.9%). Twelve (13.4%) monitoring mistakes were

recorded. Either monitoring was not requested, or it was requested but not performed and at the incorrect frequency. The least common type of pharmaceutical errors, accounting for 7 (7.8%) of all errors, were omission errors. Out of 161 treatment sheets and files examined, 89 included various pharmaceutical mistakes. These mistakes were divided into several groups, including dosing, monitoring, and documentation. Choosing and leaving out.

3.3 Type of medication errors

Table 3: Type of MEs among study participants.

Error Type	No. of errors (n)	(%)
Documentation	32	(35.9%)
Using Brand names	7	(7.8%)
Abbreviations	11	(12.3%)
Missing information	14	(15.8%)
Dosage errors	22	(24.7%)
No dosage indicated	6	(6.8%)
Wrong strength	11	(12.3%)
Dose omission	5	(5.6%)
Monitoring Errors	12	(13.4%)
Not requested	7	(7.8%)
Requested not done	2	(2.2%)
Wrong frequency	3	(3.4%)
Selection	16	(17.9%)
Unnecessary drug	11	(12.3%)
Contraindicated drugs	5	(5.6%)
Omission errors	7	(7.8%)
Medication not prescribed	3	(3.4%)
Medication not administered	4	(4.4%)

4. DISCUSSION

Pneumonia was the most frequently diagnosed condition in this cohort, accounting for 55.9% of all admissions. Asthma and appendicitis come next. Medication errors can be serious or even dangerous when they occur during the prescription or administration of medications. When they do, juvenile patients are at significantly greater risk than adults.^[4] According to the current study, which looked at 161 pediatric inpatient treatment sheets and files, medication errors may affect anywhere between 5% and 10% of all pediatric in-patients. Recently, the use of acronyms in medicine prescriptions has drawn a lot of attention and evolved into a worldwide concern as a primary factor contributing to medication errors. According to Al- Jeri Say et al., 75% of all orders had

abbreviations.^[20] Although it saves time and space, employing acronyms can occasionally prove to be highly costly because they can be misleading, have double meanings, and cause errors. The National Coordinating Council for Medication Error Reporting and Prevention states that the patient's age, weight, and height should be included on the prescription or medication order along with other crucial details like the dosage form, dose, and administration route. The safety of the patient may be seriously compromised when prescriptions are incomplete. Sex, frequency, height, length of administration, patient weight, prescriber, and mode of administration were among the details that were lacking. Usage of brand names can lead to several mistakes, particularly when it comes to drugs that sound similar

but are not. Commercial brands tend to be more expensive, which increases the risk of omission errors and limits treatment adherence.^[17]

7. CONCLUSION

More over half of the pediatric participants in the study had taken the wrong medication. Most widespread kind of pharmaceutical errors is documentation error. Antibiotics were the most commonly prescribed prescription and the class of medication with the highest rate of medication mistake. Patients with a pneumonia diagnosis experienced a significant rate of medication errors. To avoid pharmaceutical errors, Zewudetu General Hospital must work with the Addis Ababa Administration Health Bureau to give training about the reporting of pediatric medications. There should be more research done on the prevalence and causes of pharmaceutical errors.

LIST OF ABBREVIATIONS AND ACRONYMS

AIDS: Acquired Immune Deficiency Syndrome

GPW: General Pediatric Ward

ME: Medication Errors

PD: Pediatric ward

SAM: Sever acute malnutrition

WHA: World Health Assembly

WHO: World health organization

REFERENCES

1. Aronson, J.K., Medication errors: EmerGing solutions. *British journal of clinical pharmacology*, 2009; 67(6): 589.
2. Avery, A.A., Barber, N., Ghaleb, M., Dean Franklin, B., Armstrong, S., Crowe, S., Dhillon, S., Freyer, A., Howard, R., Pezzolesi, C. and Serumaga, B., 2012. Investigating the prevalence and causes of prescribing errors in general practice: the PRACtICe study.
3. Barber, N.D., Alldred, D.P., Raynor, D.K., Dickinson, R., Garfield, S., Jesson, B., Lim, R., Savage, I., Standage, C., Buckle, P. and Carpenter, J., Care homes' use of medicines study: prevalence, causes and potential harm of medication errors in care homes for older people. *BMJ Quality & Safety*, 2009; 18(5): 341-346.
4. Bourgeois, F.T., Shannon, M.W., Valim, C. and Mandl, K.D., Adverse drug events in the outpatient setting: an 11-year national analysis. *Pharmacoepidemiology and drug safety*, 2010; 19(9): 901-910.
5. Assembly G. sustainable Development goals. SDGs), Transforming our world: the, 2015; 2030. 2.
6. Fogarty GJ, McKeon CM. Patient safety during medication administration: the influence of organizational and individual variables on unsafe work practices and medication errors. *Ergonomics*, 2006; 49(5-6): 444-56. 3.
7. Glavin R. Drug errors: consequences, mechanisms, and avoidance. *British journal of anaesthesia*, 2010; 105(1): 76-82.
8. Stokowski LA. Who believes that medical error is the third leading cause of hospital deaths. *Medscape* May, 2016; 26.
9. Santell JP. Reconciliation failures lead to medication errors. *Joint Commission journal on quality and patient safety*, 2006; 32(4): 225-9.
10. Leotsakos A, Zheng H, Croteau R, Loeb JM, Sherman H, Hoffman C, et al. Standardization in patient safety: the WHO High 5s project. *International journal for quality in health care*. 2014; 26(2): 109-16. 7. Hoffmann B, Rohe J. Patient safety and error management: what causes adverse events and how can they be prevented? *Deutsches Arzteblatt International*, 2010; 107(6): 92.
11. Chan, M., Nicklason, F. and Vial, J.H., Adverse drug events as a cause of hospital admission in the elderly. *Internal medicine journal*, 2001; 31(4); 199-205.
12. Chedoe, I., Molendijk, H.A., Dittrich, S.T., Jansman, F.G., Harting, J.W., Brouwers, J.R. and Taxis, K., Incidence and nature of medication errors in neonatal intensive care with strategies to improve safety. *Drug safety*, 2007; 30(6): 503-513.
13. Duerden, M., Avery, T. and Payne, R., Polypharmacy and medicines optimisation. *Making it safe and sound*. London: The King's Fund, 2013.
14. Gandhi, T.K., Weingart, S.N., Borus, J., Seger, A.C., Peterson, J., Burdick, E., Seger, D.L., Shu, K., Federico, F., Leape, L.L. and Bates, D.W., Adverse drug events in ambulatory care. *New England Journal of Medicine*, 2003; 348(16): 1556-1564.
15. Guthrie, B., McCowan, C., Davey, P., Simpson, C.R., Dreischulte, T. and Barnett, K., High risk prescribing in primary care patients particularly vulnerable to adverse drug events: cross sectional population database analysis in Scottish general practice. *Bmj*, 2011; 342.
16. Holloway, K.A., Ivanovska, V., Wagner, A.K., Vialle-Valentin, C. and Ross-Degnan, D., Have we improved use of medicines in developing and transitional countries and do we know how to? Two decades of evidence. *Tropical Medicine & International Health*, 2013; 18(6): 656-664.
17. Inch, J., Watson, M.C. and Anakwe-Umeh, S., Patient versus healthcare professional spontaneous adverse drug reaction reporting. *Drug safety*, 2012; 35(10): 807-818.
18. Khoja, T., Neyaz, Y., Quresh, N.A., Mogzoub, M.A., Haycox, A. and Walley, T., Medication errors in primary care in Riyadh city, Saudi Arabia. *EMHJ-Eastern Mediterranean Health Journal*, 2011; 17(2): 156-159.
19. Kwame, A., *The occurrence of medication errors and the occurrence of risk factors for medication errors in state hospitals in Ghana: Patients' safety improvement in focus* (Master's thesis, University of Twente), 2009.
20. Lewis, P.J., Dornan, T., Taylor, D., Tully, M.P., Wass, V. and Ashcroft, D.M., Prevalence, incidence

and nature of prescribing errors in hospital inpatients. *Drug safety*, 2009; 32(5): 379-389.

21. Llewellyn, R.L., Gordon, P.C., Wheatcroft, D., Lines, D., Reed, A., Butt, A.D., Lundgrens, A.C. and James, M.F.M., Drug administration errors: a prospective survey from three South African teaching hospitals. *Anaesthesia and intensive care*, 2009; 37(1): 93-98.
22. Masotti, P., McColl, M.A. and Green, M., Adverse events experienced by homecare patients: a scoping review of the literature. *International Journal for Quality in Health Care*, 2010; 22(2): 115-125.
23. Reid, S., Preliminary results of the WHO GBD from unsafe injections. In *In Report on Annual Meeting of the Safe Injection Global Network: 9-11 November 2010; Dubai, United Arab Emirates*, 2010, November.
24. Rodriguez-Gonzalez, C.G., Herranz-Alonso, A., Martin-Barbero, M.L., Duran-Garcia, E., Durango-Limarquez, M.I., Hernández-Sampelayo, P. and Sanjurjo-Saez, M., Prevalence of medication administration errors in two medical units with automated prescription and dispensing. *Journal of the American Medical Informatics Association*, 2012; 19(1): 72-78.
25. Rothschild, J.M., Churchill, W., Erickson, A., Munz, K., Schuur, J.D., Salzberg, C.A., Lewinski, D., Shane, R., Aazami, R., Patka, J. and Jagers, R., Medication errors recovered by emergency department pharmacists. *Annals of emergency medicine*, 2010; 55(6): 513-521.
26. Williams, D.J., Medication errors. *Journal-Royal College of Physicians of Edinburgh*, 2007; 37(4): 343.
27. Zavaleta-Bustos, M., Castro-Pastrana, L.I., Reyes-Hernández, I., López-Luna, M.A. and Bermúdez-Camps, I.B., Prescription errors in a primary care university unit: urgency of pharmaceutical care in Mexico. *Revista Brasileira de Ciências Farmacêuticas*, 2008; 44: 115-125.